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In the traditional description of the classical theory of plates the shear forces, by definition, are integrals over 
the plate thickness of the transversal shear stresses. This leads to a breakdown of Hooke’s law for these 
stresses, inconsistency of the equations of equilibrium of the classical theory of plates with the principle of 
virtual work and the occurrence of contradictions of the type which exist in the problem of a beam bent 
statically by equivalent loads. These drawbacks of the traditional description can he eliminated if we assume 
that the shear forces, by detinition, are statically equivalent to “rotated” bending and twisting moments 
(which, in the case of the classical theory of plates, is not related to the St Venant principle). This treatment 
of the shear forces is the basis of a proposed version of the description of the classical theory of plates. An 
analysis is also given of publications in which doubts are expressed regarding the correctness of the classical 
theory of plates. It is shown that the arguments put forward in these publications do not justiry dispensing with 
the classical theory of plates. 

1. THE PRINCIPLE OF VIRTUAL WORK AND THE EQUATIONS 
OF EQUILIBRIUM 

For a continuous deformed body, occupying a volume Y and bounded by a surface 0, for small deformations in 
rectangular Cartesian coordinates, x, y, z, the principle of virtual work can be written in the form 

where 

Here F$ F;, c and e, Pi, Pz are the volume and surface forces. The asterisk denotes that these quantities are 
specified. We will use the symbol 6’ to denote the virtual work so as to emphasize that we are not concerned with 

a variation of the functional. 
The principle of virtual work (1.1) is a fundamental variational principle (not in the sense of a variation of a 

functional but iu the sense of work on variations of the displacements), and the equations of equilibrium are 

obtained from it by identify ~~sfo~atio~ without ~~odu~g any relationship between the strains and 

stresses. 
We will obtain the equations of equilibrium for a body in the form of a plate of thickness h. ‘Ib do this we first 

convert (1.2) and (1.3) in accordance with the kinematic assumptions made in the classical theory of plates 

E, -0, Ya -0, Yyz =O 

With these assumptions we obtain from (1.4) 
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where i& = -4w/&, $ = -&@v are the angles of rotation of the normals to the median plane. 

We used the conditions u(z = 0) = 0, u(z = 0) = 0 in deriving (IS). This, however, is not an additional 
assumption, since it can be shown that the equations of equilibrium in the classical theory of plates can be 

separated into a plane problem and a bending problem. We will only consider the latter below. 

By the assumptions made above, Eqs (1.2) and (1.3) can be converted to the form 

where 

Here n is the area of the median piane of the plate, bounded by the contour S. The normal to the contour v is 
specified by the direction cosines cos (x, V) = cm tp, cm (y, v) = sin qt. Since, according to the kinematic relations 

imposed6s,=6y,=6yy,=6u(z=0)=6u(z = 0) = 0, the corresponding terms in (1.6) and (1.7) are omitted. 
It should be noted immediately that terms containing &, ~2, oz play no further part in our subsequent analysis, 
and these stresses will therefore not occur in the equations of equilibrium. 

We convert (1.6) to the following form 

W substitute (1.5) here, and we similarly get rid of the variation under the derivative sign. We further integrate 
over the thickness and, using Gauss’ formula, we obtain the following final expression for the virtual work 

-I{(~~-M:)~w,,+fM,-M:~w,,-(Q-Q'+m)bnjdr-0 
.s 

M,=,f~,uir, M,=Ju@z, M,=It,zdz, m-m,cosrp+my sintp 

M, = M, COS’ 9~ + MY sin2 (p + Mxr sin2rp, MS -f(M,-M,)sinZrp+M~cosl~ 

(I-9) 

Since (1.9) is the equation of the work of the external and internal forces for virtual displacements, the factor 
in front of SW in the first integral is the projection onto the z axis of the external and internal forces acting on an 
element of the plate hdCL ‘Ihe condition of equilibrium of this element has the form 
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We will now consider the contour integral in (1.9). We denote the integrand by L. Since we completely define 

&v, by speci@ing &v on the contour, the third term must be converted by integrating by parts 

-/L&T= --JaLr-(MS -MpNv~ 
(1.11) 

f aM * aiw* \ @=(M,,-M;)Sw.,- Q+,-Q +m-- &w 
t as I 

The term outside the integral is evaluated as the difference between the values of the corresponding functions 

at the ends of the contour Cr, where the force conditions are specified. 
We will now consider the case of the corner point S* on the contour, when tp changes abruptly 

(1.12) 

The occurrence of the fast term is due to the possibility of a ununited action being present at the comer 
point, which is taken into account in L by means of a delta function. We fmally obtain 

S.-O 

-0”’ - 1 ads- guk&-(Ms-M:,awc; + q * +o G- 

+ 1 M,(s* +0)-M&* -o)+M;(s+ -0)~M;(s'+O)-Q'(s*+v(s*) (1.13) 

Equating the expression in square brackets to zero, we obtain the conditions at the discontinuity. Similar 

conditions, derived in [2, SJ, do not contain the term Q*(P) due to the fact that the possibility of the appfication 
of concentrated forces was not taken into account. 

Hence, the following conditions are spectied on the smooth part of the contour 

aM 
wrw*-Q+A-Q 

. ad 

as 
+2-m, w,~-w,~~IU~=M~ 

as 

and at the point of inflection of the contour we also have the following condition at the di~nt~ui~ 

w(2)- W*(S*)- M,(s* +O)-M,(s. -O)=M;(s*+O)-M;(s*-O)+Q*(s*) (1.15) 

Since the terms occurring in (1.13) have a clear physica meaning, namely, they represent the work done in 

deforming the contour of the plate, the factors in front of the virtual generalized displacements are also corres- 

ponding generalized contour forces. Hence, an external shear contour force R = Q* + &f&r and a moment MC 

act on the contour, to which there correspond internal force factors K = Q + &U& and M,. For the comer point, 

the shear contour forces K” and K”* are defined, respectively, by the left- and right-hand sides of (1.15). As can 
be seen, the same contour force IP can be specsed differently in terms of Q* and M:. 

The equations of the equilibrium of the internal elements of the plate (1.10) and the contour elements of the 

plate (1.14) and (1.15) obtained above hold for any relations between the stresses and strains, including the case 
when the stresses cannot be expressed directly as a function of the strains, for example, in the theory of plastic 
flow, etc. 

In the case of an isotropically elastic body we have 
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In Hooke’s law it is assumed that oz = 0. Substituting (1.16) into (l.lO), (1.14) and (1.15) and using (1.4) and 
(1.5) we obtain the Germ&-Lagrange equation and the force contour conditions in dispIacements. Note that we 
are not concerned here with any breakdown of Hooke’s law for r, and $. 

We now need to look at two aspects of the proposed derivation of the ~~~-v~ue problem of the classical 
theory of plates. 

First, the transverse shear stresses z, and 5 do not participate in the balance of forces acting on an element of 

the plate since they do not do work on the zero deformations s and rp JQrcbhoff, Boussinesq, Clcbsch, St 
Venant, Kelvin and ?&it [l] also assumed 5p = s = 0, ahhougb this is not related to the principle af virtual work. 
However, they did not attempt to explain how, in thii case? the balance of the external shear loads occurs, which, 
obviously, also led to the modern (tra~tiou~~ description of the cmssical theory of plates, when integrals over the 
thickness of the transverse shear stresses Qx d”=’ J z&(.x p y) are considered as the internal shear forces which 
balance the external load. This treatment of the shear forces leads to deficiencies in the description, indicated in 
the abstract above. An attempt to establish a mechanism by which the external shear loads are bdanced without 
giving up the idea that there are no shear stresses 2, and zun is made in the next section. 

Second there is only one equation of ~u~ib~um (l.10) for a non-Anton eIement of the plate-there are no 
equations of the balance of the moments in the projection on the z axis relative to the x and y axes. This does not 
mean that balance of the momenta breaks down. A detailed discussion is given below. We merely note that this 
situation is not unusual. Thus, the equations of the classical theory of elasticity in displacements consists of three 
equations of equilibrium in projections onto the r. y and z axes, Although the equations of the balance of the 
moments about these axes does not occur in explicit form, the baiance of the moments is taken into account 
a~tornat~~y via the s@&ing law” of the shear stresses. 

2. INTERPRETATION OF THE SHEAR TRANSVERSE FORCES 

According to the above assumptions, within the framework of the classical theory of plates a plate can be regard- 
ed as a ~rnb~a~on of an inlinitely large number of absolutely rigid and infinitely smah, in plan, prisms of height h. 

By saying that the prisms are absolutely rigid we have in mind the possibihty of statistics equivalent 
transformations, described later, but this does not mean that there are strains &> 9, h in planes parallel to the 
median plane of the plate and that the conditions of continuity of the strains break down. 

Bending moments M, and M, torques M,, distributed external moments m, and 9, and a distributed external 
load 4 (Fig. 1) act on the prism. Summing the moments, which rotate the prism around the x and y axes, and 
neglecting higher-order terms, we obtain the following expression for the resultant moments 

dd- aA4 
G,~Y - adxdy+- 

ax 
aMv Qkdy + m,a!xdy 
ay 

Since each prism is an absolutely “rigid body”, a statically equivalent transformation of the moments, illustrated 
in Fig. 2, is legitimate. For transformations in thex direction we must assume Hdg G,, l’sx, while in they direction 
we must assume H%f Gr I sf y. Hence, the toad which is balanced by the distributed forces aG&Ix and &3,&j,. in 

the internal region of the plate 

Q-2) 

or, separating the average internal moment Q&rd,v, Q* from the external moment m&y and m&ray, we 
obtain the equation of equ~ibrium of the element of the plate on which an external shear load q* acts, which is 
br&anced by the inter& shear forces $& and Q, in the projection on the z axis (Fig. 3) 

aQ,Iax+ap,, tay+q*-0 P-3) 

Here 



On the classical theory of plates 1105 

Fig. 1. 

i H 
Fig. 2. 

Fig. 3. 
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def 

QX = aM,iax+aM,lay,q,~f~M,,ay+aM,Iax 

*&f 
4 ~~~arn~fa~~am~~ay 

(2.4) 

are definitions of the transverse forces as “rotated” moments. Relations (2.4) are not the equations of the balance 

of moments, they are equalities by definition. After all the moments, internal and external, acting on the element 
of the plate are “rotated”, the need to consider the balance conditions separately drops out. 

Equation (2.3) is the necessary and sufhcient condition for self-balancing of an element of the plate. The self- 

balancing condition without using conversion of the moments would have the form 

G, 10, G, -0, qmo P-5) 

which is of no practical interest although it is also sufficient for self-balancing of the elements. Note that similar 
discussions on the ~nditions for set-bal~c~g of a chain of rigid cross-shaped elements were used in [6, 
pp. S-711 to illustrate the Kelvin-Bit transformation, about which we shall say more below. 

We will now consider the conditions on the contours. We obtain from the equilibrium of the contour elements 

(Fig. 4) 

b4,-M:, Q-Q’-m, MS-Mf (2.6) 

where M,, Q and MS are given by (1.9). Further using the statically equivalent transformation for M,(Hkf MS, 
I%f s), proposed for the first time by Kelvin and Tait, we obtain the boundary conditions (1.14) and (1.15). 

It should be borne in mind that not only moments but also transverse forces Gx = Q, + m, and GY = QY + m, 
are applied over the surfaces of the contour elements. This is a consequence of the fact that these surfaces are 
finite points for the statically equivalent transformations in the inner regions, i.e. the points B or C in Fig. 2. 

We emphasize the differences between the proposed treatment of the classical theory of plates and the 
traditional one. Fit, the “rotated” moments (2.4) are the shear forces in the proposed treatment, whereas in the 
traditional treatment the shear forces are the integrals of the shear stresses 

Second, in the traditional treatment, Eqs (2.4), after changing the sign of equality by definition (dgf) into the 
sign of simple equality, are the equations of the balance of the moments. Hence, in the traditional treatment of 
the classical theory of plates we have the equations of equilibrium. In the treatment of the classical theory of 

plates proposed above there is no need to consider the equations of the balance of the moments separately. 

Fig. 4. 
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It can be seen from the above discussion that the treatment of the classical theory of plates proposed in this 
section agrees well with tbe principle of virtual work. Note also that the hypotheses of undeformed normals used 

in the classicaI theory of plates leads to the need for statically equivalent tra~fo~ations. These evocations 

are in no way related to the St Venant principle and due solely to the kinematic assumptions made. The problem 
of the statically equivalent transformations on the contour was solved a long time ago; the most exhaustive discus- 
sion of this can be found in [6, pp. B-71]. The method of constructing the classical theory of plates proposed 

above consists essentially of extending the Kelvin-‘&it transformation to the internal region of the plate. 

3. SOME PROBLEMS IN THE CLASSICAL THEORY OF PLATES 

We will uow consider some examples [l-3] which were the reason for the assertion that the classical theory of 
plates “is unable to obtain a correct solution of certain problems which, in their formulation, are outside the scope 
of the hypotheses employed”, and, consequently, “raise natural doubts as to its completeness as a physical theory” 

PI. 

~~~~~~ ofthe torsion of up&z&. “In general, there is no solution within the framework of the classical theory 
of plates of the problem of the free torsion of a rectangular plate, the transverse edges of which are loaded with 
torques, while the longitudinal edges are free. As we know, by the St Venant solution there are no normal stresses 
in a plate loaded in this way, and, consequently, no bending moments or curvatures. As a result, its deflection 

takes the form w = cxy (where c is a constant), corresponding to torsional moments acting both on the transverse 
and Iongi~~~ edges. It turns out to be impossible to ensure that there are no such moments on the Iongi~d~aI 

edges, i.e. to satisfy the specified boundary conditions in the classical theory of plates” [I]. 

Substituting w = cxy into the contour conditions (1.14) and (1.15) and taking Hooke’s law into account, we 
obtain 

For the corner point 

K “* 1M~(s*+O)-M,,(s*-O)+Q*(s*)--2(1-~)~5, D- 
Eh3 

12(1-f.& 

Equations (3.1) and (3.2) uniquely define the external contour forces of the load, to which corresponds the 
speci6ed value of the deflection. In other words, the plate bends along the surface w = ary due to the application 
of concentrated pairwise opposite forces at the corners of the plate. It can be seen from (3.2) that the specified 
quantity K”* can be expressed differently in terms of M: and p. Thus we can assume that the same torsional 

moments Mf act on the ptate on all sides, while the external torsional moments M: act only along opposite sides, 
etc. All these versions of the application of external loads are statically equivalent. Hence, the idea of a ?orque” 
on the contour is meaningless in the classical theory of plates: it is impossible to distinguish it from the Kirchhoff 
shear force on the contour, We cannot say whether there is or is not a torque on the contour; we can only say that 

Kirchhoff forces are or are not present. The various problems of the torsion of a plate in the formation of the 
three-dimensional theory of elasticity under pairwise opposite comer forces or torques from opposite sides or 
other problems for which conditions (3.1) and (3.2) hold, “merge” into one in the classical theory of plates. This 

illustrates the approximate nature of the classical theory of plates but not its internal contradiction. 

Regarding the or&r of the equations of the classical theory of plates. “. . . in mechanics the order of the equation 
n and the number of boundary conditions m are closely related to the number of conservation laws k employed, 
namely, n = 2k and m = k. Xn the theory of the bending of plates three laws of conservation are used: the balance 
of the shear forces and two equations of the balance of the moments. This means that the theory of plates should 
be described by sixth-order equations with three boundary conditions”. In the classical theory of plates “which is 
described by fourth-order equations with two boundary conditions, one of the conservation laws is lost: the 

equation of the balance of the shear forces, strictly speaking, is not satisfied” [2]. 
The applicability of the hypothesis regarding the relation between the order of the equations and the number 

of conservation laws is obviously confined to higher powers than is assumed in the given quotation. 
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As was shown in Section 2, all the conditions of equilibrium are completely satisfied in the classical theory of 
plates. 

We will give another example which refutes the above halest. The equations of the theory of elasticity in 
displacements are of the sixth order. By the logic used in [2] they should be of the twelfth order: three equations 
of equilibrium in projections onto the x, y and z axes plus three equations of the balance of the moments about 
these axes, and all these multiplied by two. 

Generally speaking, the idea itself of finding a certaiu principle which rigorously relates the physical models (a 
continuous medium, equilibrium, etc.) to the mathematical models (the type and order of the equations, etc.) is 
doubtfuL However, the same physical model-a ~nt~uo~ elastic plate, can have different ma~emati~ models 
-a membrane (a second-order equation), the classical theory of plates (a fourth-order equation), and the 
Reissner theory of plates (a sixth-order equation). 

An illustration that the condition of the balance of shear forces is not satisfied, the problem of the torsion of 
a plate by forces at the comers was considered in [2] (see above). “We will now consider a quarter of the plate 
0 c x 6 a/2,0 c y s b/2. We obtain a plate on which only a force 2Q, concentrated at the corner, acts. No other 

transverse forces act on it. The balance of the shear forces is obvionsly violated” [2]. The author, however, 
overlooks the fact that when the quarter is cut, three new angles are produced at which the same concentrated 
forces act as on the initial plate. 

7?te probkm of II beam. The essence of the contradiction pointed out [2] is the fact that for problems of the 
bending of beams the same deflections, but different shear forces are obtained by statically equivalent loads. In 
Fig. 5 we show diagrams of Q and M for this case. In the traditional description of the classical theory of pIates 
the shear forces Q and the bending moments M, when there is a distributed moment load m, are related by the 
formula 

Q=&W/ax+m (3.3) 

and the contradiction is obvious. 
Equation (3.3) is obtained from a consideration of the equilibrium of au element of the beam on which the 

distributed moment load acts. Then, since Q ds Jz& we can assume that Q and A4 act simultaneously. If we 
dispense with the assumption in Section 2 of interpreting the shear force as a “turning” moment, we have instead 
of (3.3) 

(3.4) 

and there is no contradiction for either version of the loading. From the point of view of this treatment of the 

classical theory of plates the difference in the diagrams in Fig. 5 is due to the fact that in one case (on the right in 
Fig. 5) when drawing the diagram of Q the moments were “rotated”, while in the second they were not. Generally 
speaking, it is advisable to rotate the external distributed moments abates and to consider the generalized 
shear load as in (2.3). 

Fig. 5. 
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The problems of a punch. ‘An example of the solution which does not agree with the physical meaning of 

the problem is the problem of a plate bent by a shallow punch, the surface of which is given by the equation z = 
a0 + a$ + a$_ It is obvious that in the law of contact with a punch the bending deflection will also be determined 
by a second-order polynomial”. Hence it follows that the contact pressure found from the Germain-Lagrange 
equation is not present, and “the equilibrium of the punch is ensured by forces distributed over the boundary of 

the region of contact” [l]. 
In the above discussions it was assumed that it is obviously possible for a region of contact to exist between the 

punch and the plate. However, this assumption is of doubtful validity. 
The loading of a circular plate by an (for s~plici~) axisymmetric punch begins with the appli~tion of a 

concentrated force at the centre of the plate at the point of initial contact with the punch. The deflection function 
in this case has the form [4J: wi = bO + birr + btiln??, where rr = ?+ y” and be, bl and bz are constants. This 
expression is not a second-order polynomial and there is no region of contact. When the pressure on the punch 
is increased a circle of contact occurs, and the contact forces are now transmitted over the whole of this circle. 
The depressions from the side external to the circle are then deflections by an expression of the type ~1, while 
inside the circle it is determined by the expression wa = CO + ci 3, which under the ~nditions CO = ao, cl = al = 
a2 (for a certain value of the pressure of the punch) coincides with the punch surface. But when the load is 
increased further this coincidence breaks down and new circles of contact occur, etc. Hence, the calculation 
procedure changes during the loading. It was suggested in [7] that this kind of problem should be called a 
structurally non-linear problem. 

If, in the case considered, it is assumed that there is a local region of contact then it is possible to analyse the 
cylindrical bending using two punches [3] (Fig. 6a). Here again we have a structurally non-linear problem. At the 
initial instant, due to the action of the concentrated force at the point A, a freely supported plate is bent in the 
form of a cubic parabola (Fig. 6b). For punches in the form of a quadratic parabola, when P reaches a certain 
value, new points of contact arise, etc. Once again the theoretical scheme changes during the loading. When P = 
P* the system acquires the form shown in Fig. 6(a). 

The following contradictions were pointed out in [3]. It can be seen from Fig. 6(a) and (b) that a freely 
supported plate is bent by the normal pressure of the punch. But, on substituting an expression for the deflections 
of the form ws = do + dt\?. into the boundary-value problem of the classical theory of plates, one can obtain that 
for such a bending of the plate additional contour moments are necessary which do not exist in the case of free 
support. 

In these discussions the fact that, at the end of the loading, the plate is no longer freely supported, is 
overlooked. It is clamped. It is precisely this clamping which produces the bending moment which enables the 
plate to take the form of a quadratic parabola. It can be seen from Fig. 6(c) that if we “remove” the material of 
the punches everywhere apart from the boundary points, we will in no way affect the elastic line of the plate, since 
it is completely defined by the moments produced by the clamp. Hence there is no contradiction. 

Determination of the react&s of the support. When determining the reactions of the supports of a rectangular 
plate, huge-suppled along the contour, and loaded with a uniform pressure, concentrated forces occur at the 
comer points which press the plate to the contour. However, “the presence of such forces is not confirmed by the 
solution of the three-dimensional problem . . . , i.e. the solution obtained using the classical theory of plates does 
not agree with the theory of elasticity” [l]. In the theory of elasticity a free support is modelled by means of the 
conditions on the contour x = const 

(b) 

Fig. 6. 
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0, -0. uz -0, uy-0 (3.5) 

Whereas the tirst two conditions do not give rise to any doubts, since they correspond in the classical theory of 

plates tff the conditions 

hf~=o,w=o (3.6) 

the last condition in (3.5) is not quit so obvious. As was pointed out in Section 1, the absence of shear 
di~la~men~ in the median plane of the plate for bending problems is due to the fact that these di~la~rnen~ 
are not zero, and the fact that in order to determine them one must solve a separate plane problem. In the case 

of a free support for the plane problem along the contour it is logical to specify the following conditions 

N, -J-&z - 0, Nxy -$r,dz - 0 (3.7) 

The first condition of (3.7) is also taken into account in (3.5) by the tirst ~ndition, while the second ~ndition 
in (3.7) in the solution of the three-dimensional problem must be taken into account by replacing the condition 

5 = 0 in (3.5) by 

txr=o (3.8) 

But, as was pointed out in 111, the first two conditions of (3.5) and condition (3.8) along the contour x = const 
when solving the three-dimensional problem lead to the occurrence of attractive forces. 

Generally speaking, irrespective of how one models a free support in the theory of elasticity, the determination 
of the reactions is fundamentally inaccurate. This is due to the fact that in regions of local application of the load 
the stress-strain state changes rapidly in all directions and hence the classical theory of plates is inapplicable. The 
same also applies to more advanced theories of plates as a consequence of the arrogate nature of the theory, 
and not its internal contradictions. It may be some consolation in engineering calculations that the amplitudes of 
the reactions of the supports, determined using the classical theory of plates, are higher than actually occurs (see 
[3]), and hence the errors are contained in the safety factor. 
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